In Silico Activity of AS1411 Aptamer Against Nucleolin of Cancer Cells

Authors

  • Mahmoud Mirzaei Biosensor Research Center, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
  • Mohammad Rafienia Biosensor Research Center, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
Abstract:

Background: It has been expected that AS1411 aptamer could work against the cancer cells. Although the general information is available, there is still lack of details for the purpose. Therefore, activity of AS1411 aptamer against the nucleolin (NCL) target of cancer cells has been investigated in current work at the molecular scale. In addition, the same features have been also investigated for examining the activity of AT11, one of AS1411 derivatives.  Methods: This work has been done employing in silico Molecular Docking simulations. Ten starting 3D configurations have been considered for each aptamer to be docked against the NCL target. Conformational search processes of ligands against the target indicated that the starting configuration of ligand could play an important role in determining the final complex formation in both of quantitative and qualitative aspects.  Results: A04 and B01 are those starting configurations of AS1411 and AT11 making the strongest complexes with the NCL target among other ligands. The analyses indicated that the complexes of AT11 are slightly stronger than those of AS1411, in which the NCL target structure is more involved in the chelated complexes with the AT11 in comparison with the AS1411.  Conclusion: AS1411 and AT11 are specified for targeting the NCL of cancer cells for the diagnosis and therapeutic purposes. They have reasonable binding affinity and could work as possible inhibitors of NCL.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

The nucleolin targeting aptamer AS1411 destabilizes Bcl-2 messenger RNA in human breast cancer cells.

We sought to determine whether nucleolin, a bcl-2 mRNA-binding protein, has a role in the regulation of bcl-2 mRNA stability in MCF-7 and MDA-MB-231 breast cancer cells. Furthermore, we examined the efficacy of the aptamer AS1411 in targeting nucleolin and inducing bcl-2 mRNA instability and cytotoxicity in these cells. AS1411 at 5 micromol/L inhibited the growth of MCF-7 and MDA-MB-231 cells, ...

full text

Plasma membrane nucleolin is a receptor for the anticancer aptamer AS1411 in MV4-11 leukemia cells.

AS1411 is a DNA aptamer that is in phase II clinical trials for relapsed or refractory acute myeloid leukemia and for renal cell carcinoma. AS1411 binds to nucleolin, a protein that is overexpressed in the cytoplasm and on the plasma membrane of some tumor cells compared with normal cells. Studies were performed to determine whether cell surface nucleolin is a receptor for AS1411 in the acute m...

full text

Radiosensitization of breast cancer cells using AS1411 aptamer-conjugated gold nanoparticles

Introduction: A main choice for cancer treatment is radiotherapy. But, the radiotherapy disadvantage is damages caused by radiation given to normal tissues/organs surrounding cancer. One way to avoid this is via increasing radiosensitization of cancer cells. Gold nanoparticles (GNPs) have shown sensitizing effect on cancer cells by enhancing their absorbed dose. Unlike earlier ...

full text

Evaluation of somatostatin and nucleolin receptors for therapeutic delivery in non-small cell lung cancer stem cells applying the somatostatin-analog DOTATATE and the nucleolin-targeting aptamer AS1411

Cancer stem cells represent the putative tumor-driving subpopulation thought to account for drug resistance, relapse, and metastatic spread of epithelial and other cancer types. Accordingly, cell surface markers for therapeutic delivery to cancer stem cells are subject of intense research. Somatostatin receptor 2 and nucleolin are known to be overexpressed by various cancer types, which have el...

full text

AS1411 Aptamer Conjugated Gold Nanoclusters as a Targeted Radiosensitizer for Megavoltage Radiation Therapy of 4T1 Breast Cancer Cells

Introduction: In the present study, AS1411 aptamer conjugated gold nanoclusters (GNCs) have been introduced as a targeted radiosensitizer for enhancing megavoltage radiation therapy efficacy. RT has identified as an effective therapeutic modality for many different types of solid tumors. However, equal radiation beams absorption by tumor and surrounding healthy tissues is still...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 12  issue 3

pages  95- 100

publication date 2020-10

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023